The Role of Career Development in the Process of Psychosocial Adaptation to Cancer: Re-visited the Task Model Approach

André Samson Ph.D.
University of Ottawa
Hugh T. Clark, M.Ed.
Canadian Counselling Association

Abstract:
In recent years, however, improved detection and screening have resulted in increased survival among individuals diagnosed with cancer. Moreover, improved medical practices have notably extended the length of survival for many patients and improved their quality of life. Statistical information from the Canadian Cancer Society for the year 2003 suggests that the prognosis for long-term cancer survivorship is good. The survival rate (i.e., proportion of people diagnosed with cancer who are still alive five years after the onset of the disease) for all ages and cancers combined is at present 57% (Canadian Cancer Society, 2002-03).

However, the survival rate for different categories of cancer can fluctuate significantly. According to the Canadian Cancer Society, the most frequently occurring cancers continue to be breast, colorectal, and lung for women, and lung, prostate, and colorectal for men. Data suggests that lung cancer remains the primary cause of cancer death for both men and women in 2003. Lung cancer accounts for approximately one-third of the cancer deaths in men, and an estimated one-quarter of the cancer deaths in women (Canadian Cancer Society, 2002-03).

Conversely, the prognosis for other types of cancer is excellent. This is particularly true of breast and prostate cancer. The Canadian Cancer Society reports that death rates amongst women diagnosed with breast cancer and men diagnosed with prostate cancer have dropped by nineteen and ten percent respectively. In summary, while some cancers are responsible for a higher proportion of deaths, other types of cancer are successfully treated (Canadian Cancer Society, 2002-03).

Medical advances and improved treatments have not only necessitated a rethinking of the traditional view of cancer as a life-threatening illness, but also represent inducements to individuals striving to adapt in order to prolong their life. While some cancer patients struggle with the disease, others manage to cope, adapt, survive, recover, and lead meaningful and productive lives (Hounsell, Tomori, Newlin, Knox, Rundhagen, Tallman, M., et al., 2001; Muzni, Anderson, Figueiredo, & Goddins, 1994; van der Wouden, Greaves-Otte, Greaves, Kruij, & van Leeuwen, 2001).

Consequently, they have become crucial that researchers gain a better understanding of the process of adaptation to the experience of cancer, given that increased survivorship has become a familiar consequence in the lives of patients. While much of the literature reviewed so date identifies some potentially useful coping strategies for those who have been diagnosed, there is little discussion on theoretical approaches that may be useful in gaining a better understanding of the overall process of adaptation to chronic illness. One theoretical approach that can help us to better understand the process of adaptation to chronic illness is the task model (Cohen & Lazarus, 1979; Corr, 1991-92; Deka, 1995-96; Moos & Tsu, 1967). The task model has been revised numerous times in the thirty years since its introduction. Moos and Tsu (1977) and Cohen and Lazarus (1979) posited models which comprise an array of tasks. Their representation of tasks, however, is too fragmented and ambiguously demarcated. It is Corr (1991-92) who presents the most systematic and comprehensive account of task adaptation. His model is divided
Table 1

Descriptive statistics for person input factors, background factors, scientific learning experiences, sciencemath self-efficacy, outcome expectations, and scientific interests by science career (yes/no) (National Youth and Science Project (NYSP), N=3,006).

<table>
<thead>
<tr>
<th>Science Career</th>
<th>%</th>
<th>No</th>
<th>N</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>42.8</td>
<td>555</td>
<td>57.2</td>
<td>756</td>
</tr>
<tr>
<td>Female</td>
<td>57.1</td>
<td>428</td>
<td>62.9</td>
<td>726</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior (12+)</td>
<td>45.8</td>
<td>370</td>
<td>54.2</td>
<td>418</td>
</tr>
<tr>
<td>Intermediate (10-11)</td>
<td>39.0</td>
<td>339</td>
<td>61.0</td>
<td>530</td>
</tr>
<tr>
<td>Junior (9-8)</td>
<td>55.9</td>
<td>264</td>
<td>44.1</td>
<td>472</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>37.5</td>
<td>684</td>
<td>62.7</td>
<td>1,152</td>
</tr>
<tr>
<td>French</td>
<td>47.9</td>
<td>281</td>
<td>52.1</td>
<td>306</td>
</tr>
<tr>
<td>Background / Contextual</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mean(sd))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Socio-economic Status (SES)</td>
<td>46.25(12.71)</td>
<td>913</td>
<td>53.75(12.74)</td>
<td>1,344</td>
</tr>
<tr>
<td>Family Cohesiveness</td>
<td>3.59(0.91)</td>
<td>918</td>
<td>3.40(0.92)</td>
<td>1,340</td>
</tr>
<tr>
<td>Communication – Social / Scientific Issues</td>
<td>2.43(0.99)</td>
<td>928</td>
<td>2.35(0.97)</td>
<td>1,360</td>
</tr>
<tr>
<td>Family Career Encouragement</td>
<td>3.02(1.09)</td>
<td>988</td>
<td>2.90(1.04)</td>
<td>1,477</td>
</tr>
<tr>
<td>Parent Science / Math Encourage / Expect's</td>
<td>4.18(0.86)</td>
<td>871</td>
<td>3.90(0.90)</td>
<td>1,256</td>
</tr>
<tr>
<td>Learning Experiences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science / Math Grades</td>
<td>6.56(1.64)</td>
<td>985</td>
<td>5.79(1.88)</td>
<td>1,452</td>
</tr>
<tr>
<td>Perception of Science / Math Teachers</td>
<td>2.22(2.22)</td>
<td>993</td>
<td>2.20(2.34)</td>
<td>1,478</td>
</tr>
<tr>
<td>Friends Interested in Science / Math</td>
<td>2.78(0.69)</td>
<td>910</td>
<td>2.61(0.73)</td>
<td>1,326</td>
</tr>
<tr>
<td>Self-Efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science / Math Self-Efficacy</td>
<td>3.88(0.74)</td>
<td>999</td>
<td>3.54(0.78)</td>
<td>1,484</td>
</tr>
<tr>
<td>Science Knowledge Confidence</td>
<td>3.59(0.85)</td>
<td>963</td>
<td>3.43(0.53)</td>
<td>1,410</td>
</tr>
<tr>
<td>Outcome Expectations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Course Expectations</td>
<td>5.02(1.30)</td>
<td>972</td>
<td>4.29(1.86)</td>
<td>1,408</td>
</tr>
<tr>
<td>Scientific Career Expectations</td>
<td>2.03(0.26)</td>
<td>967</td>
<td>2.05(0.31)</td>
<td>1,411</td>
</tr>
<tr>
<td>Interests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Interests</td>
<td>3.94(0.86)</td>
<td>955</td>
<td>3.68(0.95)</td>
<td>1,386</td>
</tr>
<tr>
<td>Extracurricular Scientific Interests</td>
<td>2.08(0.74)</td>
<td>891</td>
<td>2.17(0.71)</td>
<td>1,300</td>
</tr>
</tbody>
</table>

All data based on valid cases for analyses.

sd=standard deviation; figures for experimental variables are also given and means and standard deviations.

Psychosocial Adaptation to Cancer - Task Model Approach

into four distinct areas of coping; these are as follows: (a) Physical; (b) Psychological; (c) Social; (d) and Spiritual.

As previously noted, none of the previously mentioned authors include the role of work and career development in their models. Given the fact that cancer patients are living longer and leading relatively normal lives, a serious diagnosis is not inevitably predictive of major disruptions in the work life and career development of chronically ill persons. In other words, despite their illness, individuals may continue to be engaged in their work and feel that they can keep working.

Consequently, we believe that the vocational task should be considered within the domain of the task model. The final section will consider the limitations of the current research and suggest potential questions for further study in this subject (Brown & Tri-Scale, 1992; Samson & Zerter, 2003).

Task Model Approach: Phenomenological & Holistic Aspects

The task model posits a dynamic model which introduces a phenomenological perspective. The model recognizes individual differences, and underlines each individual's unique capacity for adapting to the demands and pressures of the chronic illness. Central to this theme is the notion that individuals' subjective perceptions of their disease allow them to construct their own reality. Chronic illness, therefore, does not affect individuals in a uniform way because the experience of illness is a function of each individual's perceptions, interpretations, and understanding of what is happening to him/her (Cohen & Lazarus, 1979).

The process, as described in the preceding paragraph, results in different ways of conceptualizing and dealing with the impacts of the chronic illness. For example, those who are not overwhelmed by their fears may worry less about the effects of the disease on their lives. Paradoxically, for others, the experience of cancer is a more encompassing experience that causes profound fear and distress.

The intensity and variations of these emotional expressions is determined by the process of cognitive appraisal or subjective perceptions. These processes, can, generally speaking, elicit a crisis reaction in which the implications of a serious illness like cancer are seen as potentially dangerous and deadly. This phenomenon is fully articulated in what is commonly referred to as the Initial Crisis (Cherny et al., 1994; Lazarus & Folkman, 1984; Samson & Zerter, 2003).

The Initial Crisis

As stated above, the news of a serious diagnosis often provokes what is commonly referred to as the initial crisis. The critical insight that is conveyed by this concept is that under the impact of traumatic events, individuals understandably develop a crisis reaction because their circumstances are considered overwhelming or insurmountable. For example, persons may wonder whether or not they have adequate resources to deal with their new and painful reality. Consequently, numerous individuals feel very shocked by the diagnosis.

Thus, it is not uncommon, when the news of a diagnosis is first received, for individuals to feel swollen, vulnerable, helpless, or overwhelmed. Other common reactions include fear of dying, anguish, despair, anger, and denial. In terms of career development, many were looking forward to fulfilling some of their dreams, career ambitions or plans, instead view these as lost ambitions or opportunities. To some extent, one's hopes and ambitions are subject to the unpredictable nature of the outcome of the life-threatening illness, which can lead individuals to wonder and worry about the future (Mazur et al., 1994; Cohen & Lazarus, 1979).

The process, as described in the preceding paragraph, results in different ways of conceptualizing and dealing with the impacts of the chronic illness. For example, those who are not overwhelmed by their fears may worry less about the effects of the disease on their lives. Paradoxically, for others, the experience of cancer is a more encompassing experience that causes profound fear and distress.

The intensity and variations of these emotional expressions is determined by the process of cognitive appraisal or subjective perceptions. These processes, can, generally speaking, elicit a crisis reaction in which the implications of a serious illness like cancer are seen as potentially dangerous and deadly. This phenomenon is fully articulated in what is commonly referred to as the Initial Crisis (Cherny et al., 1994; Lazarus & Folkman, 1984; Samson & Zerter, 2003).
ness is determined by the patient’s cogni-
tive appraisal and subjective percep-
tions of his/her circumstances. Over a period of time, the individual’s cogni-
tive appraisal or subjective perceptions of what is happening to him/her slowly change, and the emotional reactions, natural after the initial disclosure of a life-threatening illness, appear some-
what less severe (Kangas, Henry, & Bryant, 2002; Turnquist, Harvey, & Anderson, 2002).
Therefore, the disease is progressively-
ly perceived as less menacing and dangerous, and its consequences alter-
atively recognized as not as challenging rather than as threatening.
Accordingly, the illness is gradually assimilated into the life and identity of the chronically ill patient. In this situa-
tion, individuals slowly get over the cri-
sis period and begin to see themselves as more able to cope with the experi-
cences. In short, this phenomenon
represents not only a turning point in the way patients conceptualize their ill-
ess, but also a critical variable influ-
encing the process of adapting to the new situation.
With the passing of time, then, per-
sions come to terms with the diagnosis. They begin to diminish its impact and seek constructive ways to deal with the difficulties, restrictions, and demands the illness imposes on their lives (Taylor, 1983). The emphasis in this process, therefore, is on carrying on with life and relinquishing the past. This provides perspective and gives individuals an opportunity to rebuild their lives, alter their self-image, strengthen old relationships, and establish new social roles (Schlossberg, Waters, & Goodman, 1995).
Description of Adaptive Tasks
A diagnosis of cancer is a life-
changing event, and its impact on the lives of individuals is often pro-
found and lasting. Such an event repre-
sents a period during which individuals begin to question their dreams, aspira-
tions, goals, relationships, and even their existence.
While nearly everyone exposed to a life-threatening illness will experience some sort of initial crisis, not all will continue to be negatively impacted by their situation. With time, the shock of
the diagnosis is absorbed; its impact is gradually accepted and integrated into the life of the affected individual. Accordingly, individuals slowly begin to reconstruct their lives (Kurtz, Wyatt, & Kurtz, 1995).
The task model helps us to better understand how individuals construct their lives in spite of their illness. The process of adaptation in Corr’s task model is divided into four major tasks. These are as follows: (a) Physical; (b) Psychological; (c) Social; (d) Spiritual.
In this model, individuals make decisions about how to manage their illness and adapt to it. The model assumes that the individual’s ability to adapt to a life-threatening illness is affected by their perception of the illness and their ability to manage it. The model also assumes that the individual’s ability to adapt to a life-threatening illness is affected by their perception of the illness and their ability to manage it.

Results
Descriptive statistics for the measures comprising the five theoretically-
based constructs (person input, back-
ground context, learning experiences, self-efficacy, outcome expectations, interests) by science career choice (yes/no) are presented in Table 1. Preliminary analyses were undertaken to assess the univariate properties of the study measures, impact of missing data, and verify construct scales. There were several significant relations among the predictor variables. However, the magnitude of the correlations (0.001-
0.59) was not sufficiently high to pose problems with multicollinearity in further analyses.
Logistic regression analysis was performed to explore the contribution of contextual and experiential factors to the prediction of career choice. Adolescent person-input variables were entered into the model first to determine the unique predictive variance of the separate sets of measures in subsequent models. This was followed by the introduction of multiple odds ratios (OR) and 95% confidence intervals for the series of regression models.
The results of the model comprised of person input variables (Model 1) indi-
cated that gender, senior grade-level, and English as a first language were positively associated with the likelihood of a scientific career. Being male increased the probability of a scientific career choice by 23% as compared to females. Senior-level, and English students had an approximate 50%
increased likelihood of choosing a career in the sciences than junior and French language students. Intermediate grade-level was not significa-
tantly different from the junior student reference. The overall model was signi-
ficant (p < .001), with a McFadden’s (pseudo) R2 of 0.60 (Table 1).
The addition of the background / context variables resulted in a unique contribu-
tion to the prediction of career choice (block χ2 = 43.85, df = 5, p < .001, R2 = 0.63) beyond that accounted for by person and contextual factors. Students were more likely to want a scientific career with increasing fami-
ly communication on social/scientific issues, and parental encouragement. Girls had a 31% increased likelihood of choosing a scientific career by their senior grade-level, and English as a first language. Being male increased the probability of a scientific career choice by 23% as compared to females. Senior-level, and English students had an approximate 50%
increased likelihood of choosing a career in the sciences than junior and French language students. Intermediate grade-level was not significa-
tantly different from the junior student reference. The overall model was signi-
ficant (p < .001), with a McFadden’s (pseudo) R2 of 0.60 (Table 1).

The addition of the background / context variables resulted in a unique contribu-
tion to the prediction of career choice (block χ2 = 43.85, df = 5, p < .001, R2 = 0.63) beyond that accounted for by person and contextual factors. Students were more likely to want a scientific career with increasing fami-
ly communication on social/scientific issues, and parental encouragement. Girls had a 31% increased likelihood of choosing a scientific career by their senior grade-level, and English as a first language. Being male increased the probability of a scientific career choice by 23% as compared to females. Senior-level, and English students had an approximate 50%
increased likelihood of choosing a career in the sciences than junior and French language students. Intermediate grade-level was not significa-
tantly different from the junior student reference. The overall model was signi-
ficant (p < .001), with a McFadden’s (pseudo) R2 of 0.60 (Table 1).

The addition of the background / context variables resulted in a unique contribu-
tion to the prediction of career choice (block χ2 = 43.85, df = 5, p < .001, R2 = 0.63) beyond that accounted for by person and contextual factors. Students were more likely to want a scientific career with increasing fami-
ly communication on social/scientific issues, and parental encouragement. Girls had a 31% increased likelihood of choosing a scientific career by their senior grade-level, and English as a first language. Being male increased the probability of a scientific career choice by 23% as compared to females. Senior-level, and English students had an approximate 50%
increased likelihood of choosing a career in the sciences than junior and French language students. Intermediate grade-level was not significa-
tantly different from the junior student reference. The overall model was signi-
ficant (p < .001), with a McFadden’s (pseudo) R2 of 0.60 (Table 1).
reflected adolescent perceptions of sci-
entific ability. Outcome expectations in-
cluded whether one felt science would be
useful to one’s future career, and expec-
tations of science-related employment.
Interests were comprised of interest in
scientific concepts, and engagement in
extracurricular science activities.

The science fair portions based on the
Lent et al. (1994) model were also
examined in this study. These included:
Self-efficacy beliefs will affect career
choice goals both directly and, indirectly
through interests (Lent et al.’s Pro-
positions 3A and 3C); Outcome expectations
will affect career choice directly, and
indirectly through interests (Lent et al.’s
Propositions 4A and 4C); and there
will be a direct effect of interests on
choice goals (Proposition 5A). Research
has indicated direct relationships
between these experiential constructs
with choice goals in the science/math
domain (e.g., Ferry et al., 2000; Fouad
& Smith, 1996). There is also evidence
that the influences of self-efficacy and
outcome expectations on choice goals
may differ across gender (Kemprecos &
Gilyre, 1994; Ferry et al., 2000; Fouad
& Smith, 1996; Lent et al., 1991; Lent
et al., 1993; Naata & Epperson, 2003;
of social-cognitive theory has largely
focused on the role of self-
"efficacy (Fouad & Smith, 1996).
There has been research support of this
role of the scientific outcome expecta-
tions. The current study explores the
relations of these three experiential
influences on the self-efficacy, interests,
expectations, and interests – with sci-
cific career goals.

Method
Sample
Participants were obtained from the
National Youth and Science Fair Project
Study (NYSFS). The original study
consisted of 4,024 Canadian students
(13-19 years), with a response rate
of 72% (participants were Canadian-Wide
Science Fair (CWSF) competitors (50%
male, 44% female) and 82.0% (3,366),
a comparable national sample of non-
students (50% male, 50% female). The
present study is based on the compari-
sion subgroup of adolescents.

Psychosocial Adaptation to Cancer - Task Model Approach

The Social Task: The Importance of Adequate Social Support

Chronic illness often imposes a certain form of marginalization. This is because patients may eventually cut off from their regular social support system. In effect, the experi-
ence of a life-threatening illness often results in the discontinuance of a life that is conducive to the development of social relationships. The individual may not be able to go to work or go out for a period of time and may engage in fewer professional, cultural or leisure activities; often patients abandon these altogether. In short, the patient experi-
ces a sense of loss or a reduction in the result of his/her illness (Cohn & Lazarus, 1979; Cori, 1991-92; Moos & Tsu, 1977; Muzzatti et al., 1994).

German Groth, the affected individual is treated by others as a sick person, and as such, is considered as an alien member of society. This tendency highly depends on the individual’s associ-
ated with illnesses like cancer. The impact of stigma often makes it difficult for cancer patients to rely upon the usual social network through the recovery process (Cohn & Lazarus, 1979; Cori, 1991-92; Moos & Tsu, 1977). Eventually, they may begin to feel that they are alienated from society. Moreover, instead of feeling like contributing members of society, cancer patients often feel like they have become a burden to it.

Thus, persons with cancer can be affected by society’s response to the disease. For example, a type of cancer may carry with it a form of social stigmat-
ization which further isolates the chronically ill individual (Shaw, Segal, Poljakusky, & Harbourn, 2002). Persons diagnosed with lung cancer, for exam-
ple, are vulnerable to the negative reac-
tions of society. There is a tendency in

Canadian Journal of Career Development/Revue canadienne de développement de carrière
Volume 5, Number 2, 2007

Canadian Journal of Career Development/Revue canadienne de développement de carrière
Volume 5, Number 2, 2007
Psychosocial Adaptation to Cancer - Task Model Approach

For cancer patients, spiritual involvement seems to play a vital role. In effect, spirituality can become an important element of a patient group context within which more adaptive strategies can be developed. It has often been associated with improved psychological functioning and an increased capacity for coping with one’s stressful life circumstances. For example, spirituality can be particularly helpful in alleviating anguish and facilitating well-being and coping with pain (Georgesen & Duncan, 1996; Jenkins & Pargament, 1995).

As well, spirituality can provide sources of meaning and significance to life. By making sense of what has happened, individuals can reinterpret their situation in a more positive light. Those who are unable to find meaning in their experience may find themselves struggling with coming to terms with their reality (Coe 1991-92; Samson & Zerter, 2003).

Spirituality can also furnish patients with new sources of meaning and purpose in life through relationships beyond the self to others (e.g., a counsellor) and/or to a supernatural power. These types of relationships may provide energy, motivation, and hope, and remind individuals that they are not alone and that they are capable of regenerating themselves and rebuilding their lives (Rohr, 2001; Yalom, 2003). Most significantly perhaps is the fact that only spirituality may make sense of what is essentially absurd, that is, suffering and death (Samson & Zerter, 2003).

Vocational Task: The Development of the Career

It is easy to justify the addition of work and career development to the current task model since work life in general and the concept of career represent a central focal point in human experience. Firstly, work plays an important part in the lives of individuals. Secondly, career gives rise to unique and individual aspects of identity or personality, ensuring a certain measure of autonomy and financial independence, and provides a mechanism for social interaction (Hofman, 1977).

According to Riverin-Simard (2002), individual identity was in the version of the Lent et al. (1994) model (Figure 1). The differential utility of model constructs in accounting for career choices was examined. Examination of the relationship between separate constructs and career choice is needed. Prior investigations on social-cognitive theory have tended to focus on self-efficacy beliefs in isolation from other constructs (Lent, Brown, & Gori, 1997). There has been relative- ly less inquiry on the role of the other socio-cognitive mechanisms (e.g., outcome expectations) in the study of educational and career behaviours. Lent and colleagues (1994) have suggested that assessment of their model focus upon content-specific variables. Fewer studies have examined the theoretical constructs in their model from a domain-specific perspective (Ferry, Findl, & Smith, 2000) and with samples often of high school college students. Research on the relations between science education factors and preadolescent/adolescent career aspirations has been limited (Foud & Smith, 1996; Lopez et al., 1997; Pleck, 1998; Wang & Staver 1999). The present study was completed using self report by exploring the science domain for a sample of Canadian adolescents.

The primary goal was to examine the addit influence of context and experience in the prediction of scientific career choice (yes/no), beyond the personal characteristics of adolescents.

Person-inputs in the present study included gender, grade-level, and primary language (English or French). Contextual factors included socio-economic status (SES - parent occupations), family cohesiveness, family social scientific communication, family career encouragement, and parent scientific expectations/encouragement. Family cohesion has been found to play a role in the development of academic and career cognitions (e.g., academic self-concept) and choice (Glasgow, Dornbusch, Troyer, Steinberg, & Ritter, 1997; Jaun & Vondraak, 2001; Wall, Covell, & MacIntyre, 1999). The remaining measures were domain-related. Students identify parents as the largest influence on career decisions (Blekner & Jacobs, 2004) especially when choosing careers in science and engineering (Duck & Hallis, 1991). Parent SES was also considered a relev- ant domain factor. Children’s educational and career aspirations are found to be related to parental SES (as measured by parents’ income, education, and occupation) (Schoon, 2001; Trice & Knapp, 1992; Wahl & Blackhurst, 2000). Occupations requiring science and math skills also tend to be higher in status (Ferry et al., 2000). Learning experiences included sci- ence/math grades, perceptions of sci- ence/math teachers, and friends interest- ed in science. These factors reflect the documented influence of objective scientific performance and the school environment on academic and career processes (e.g., Barkham & Sharrock, 1997; Pleck, 1998; Schoon, 2001; Wall et al., 1999). The academic competencies of adolescents play an important role in quality beliefs, which contribute to career decision- making (Blekner & Jacobs, 2004; Ferry et al., 2000; Hackett, 1995; Jaun & Vondraak, 2001; Lapun, Shaugnessy, & Boggs, 1996; Lee, 1999; Lent, Lopez & Bieschke, 1991; Lent, Lopez & Bieschke, 1993; Nauta & Ipperson, 2003). Perceptions of the school envi- ronment, peers, and teachers’ beliefs may affect a child’s self-efficacy and attitudes towards math and science (Barkham et al., 1997; Pleck, 1998; Schoon, 2001; Wang & Staver, 2001). Teachers act as role models by provid- ing students with scientific learning opportunities and encouragement (Barkham et al., 1997). Likewise, it is possible that adolescents who have peers interested in the sciences may engage in scientific activities themselves, and have similar future aspira- tions. The remaining experiential con- struct were self-efficacy, outcome expectations, and interests. Self-efficacy

Figure 1 Partial version of the Lent et al. (1994) social-cognitive model of career development

Self-Efficacy

Learning Experiences

Interests

Choice Goals

Outcome Expectations

Background/ Contextual
The Effects of Context and Experience on the Scientific Career Choices of Canadian Adolescents

Diana Urajnik1, Rashmi Garg2, Carol Kaupa2, and John Lewko2

1Graduate Student, Department of Public Health Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.
2Associate Professor, Psychology Department, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 5V6.
3Assistant Professor, Psychology Department, Ryerson University, Toronto, Ontario, Canada, M5E 1E6.
4Assistant Professor, School of Social Work, Laurentian University, Sudbury, Ontario, Canada, P3E 2C6.
5Director, Centre for Research in Human Development, Laurentian University, Sudbury, Ontario, Canada, P3E 2E3.

This research was supported by a Social Sciences and Humanities Research Council (SSHRRC) funding grant. The authors would like to thank Drs. Edward Asial and Susan Bondy for their valuable comments on an earlier draft of this article.

Address correspondence and reprint requests to Rashmi Garg, Psychology Department, Laurentian University, Sudbury, Ontario, Canada P3E 2C6; email: rgarg@laurentian.ca

Abstract

This study explored the differential utility of contextual and experiential factors in the prediction of scientific career aspirations. Specific propositions based on the Lent et al. (1994) social-cognitive model of career choice were also examined. Data were obtained from a Canadian national subgroup (n=3,206) of adolescents (13-19 years) who participated in the National Youth and Science Fair Project Study (NYSFS). Multivariate logistic regression analyses indicated that family background, scientific learning experiences, science self-efficacy measures, outcome expectancies, and scientific interests contributed significant unique variance to the prediction of scientific career choice. Results of a final model revealed that students aspiring for a career in the sciences were more likely than their peers to be male, senior students, have higher grades in science, more interest in science, and expect their science courses to be useful to their future career. Scientific self-efficacy and outcome expectancies were found to have direct effects on career goals. Outcome expectancies also had an indirect effect on career goals through scientific interests. Scientific interests had a significant direct effect on career goals. Implications for career development/choice theory and practice are discussed.

Introduction

Advances in theory and a growing body of empirical literature have characterized vocational-counseling psychology in recent years (Lent, 2001). Career process explanations have evolved through the development of new theoretical approaches (e.g., Gottfredson, 1996) and the refinement/expansion of foundational works (e.g., Das, 1996; Super, Savickas, & Super, 1996). Investigators have cited the utility of consolidating the various perspectives guiding career development research and practice (e.g., Walsh, 2001). Paralleling this trend has been an increase in cross-domain inquiry both within and beyond the field (Lent, 2001). Research has sought to understand commonalities across the many domains that affect career-related behaviour by incorporating contributions from other areas of social sciences (e.g., cognitive psychology, sociology). A particularly fruitful trend has been the application of Bandura's (1986) social-cognitive theory to career behaviour. An example is the social-cognitive career development framework proposed by Lent, Brown, and Hackett (1994). The Lent et al. (1994) framework is one of the most recent and comprehensive career development theories. This model integrates person, background / context and experiential factors as antecedent influences on career-related choice behaviour. It emphasizes one of the most influential periods in terms of career choice and commitment — adolescence and young adulthood — by highlighting the mechanisms that may help shape career-related interests and selections. However, occupational choice is a life-long process that starts long before school-leaving age and continues long afterwards (Schon, 2001). The socio-cognitive processes emphasized as important to career entry are hypothesized to influence subsequent career choices (Lent et al., 1994). Associations may also be bidirectional at points. A basic version of the social-cognitive career choice model proposed by Lent et al. (1994) is presented in Figure 1.

The Lent et al. (1994) model seeks to outline the dynamic mechanisms through which young people forge academic and career choices. Person-input variables and background / context influence the learning experiences of an individual. Person-inputs are comprised of personal characteristics (e.g., gender). Parent and family influences are important contextual features in the model (Lent et al., 1994). The experiential learning sources, such as objective performance and role-modeling experiences, shape the person's sense of self-efficacy (e.g., perceived task competence) and outcome expectancies (e.g., anticipated outcome of certain outcomes, such as self-satisfaction, financial reward). The self-construction controls — self-efficacy and outcome expectancies — figure prominently in the formation of interests. Self-concept and career-relevant interests, in turn, affect career choice. Choices and performance accomplishments result in subsequent self-efficacy and outcome appraisals, and thus feed back into the model (not shown).

This study applied multivariate logistic regression analyses to a partial past fashioned by his/hers culture; however, that is no longer the case. He maintains that it is the career which provides the individual with his/r her raison d'etre, his/her identity, and an opportunity for social interaction. Of course, this process is interspersed with periods of preparation, re-orientation, and readaptation.

Often, the diagnosis of a chronic illness has a major impact on a person's work life. For example, employers may question whether or not the individual is capable of maintaining his/her previous work performance level. Also, the individual may be concerned about the loss of an asset and more of a burden to the employer. In short, the medical consequences related to the chronic illness can prevent an individual from applying himself/herself fully and effectively to day-to-day work activities and tasks. Under these circumstances, individuals must often undergo a continuous process of career re-orientation and re-adaptation (Hoffman, 1997; Roessler & Runnells, 1998).

A meta-analysis conducted by Brown and Ming Tai-Seale (1992) indicates that cancer survivors often confront numerous obstacles when they return to work. The drastic change that surfaces from their research is certainly that of discrimination. The stigma often related to potentially deadly disease like cancer can prevent survivors from securing new employment, extinguish one's hopes of promotion or vocational training, or quite simply lead to lay-off. However, individual's level of education and from lower socioeconomic strata are often more affected by discrimination in the workplace than those who are highly educated and privileged. Despite these obstacles, the career can help individuals to maintain their emotional stability and important inter-personal relationships, to improve their self-image, and to rebuild their existence (Roessler & Runnells, 1998). Often, chronic illness adds a new dimension to life by life. The diagnosis led to a new set of values; the career can become the conduit for the expression of these values. Individuals tend to accommodate more things in his/her career development and work environment and his/her ability to adapt more effectively.

As previously mentioned, the completion of one task establishes a solid foundation from which other tasks are accomplished. For example, our research indicates the development of social support and the proactive maintenance of health can promote positive cognitive adaptation and emotional equilibrium. The task model, in other words, affirms the principle that viewing the situation as a whole instead of dividing each task into a separate component is an essential component of an individual's psychological performance.

Finally, the present research also underscores the need for researchers to further study the importance of the vocational task in the process of adaptation in individuals diagnosed with chronic illness. Greater knowledge in this area may lead to better interventions that will foster optimal adaptation in individuals.

References

Inukshuk International Award
For Creativity in Career Development

Why develop this award?

The award is developed to support and celebrate creative best practices in community career development throughout the world.

- To celebrate those best practices in community career development within which unmet needs get the recognition they deserve.
- To encourage others to share their best practices.
- To respond to the many requests by our readers for the dissemination of creative community best practices.

What programs can be nominated?

- Programs must have as their central core the provision of career services in the community sector.
- Programs cannot be national programs or micro components of larger national programs.
- Community Career Development programs from around the world can be nominated.
- Programs should have been established for no less than 3 years.
- Programs should have had a formal evaluation on the programs impact.

How to nominate a program?

- All nominations must be accompanied by an overview of the program – program name, nature of program, program impact, clients served (Include as much detail as possible).
- Three letters of reference from individuals who can attest to the programs impact.
- All other information that might assist the independent committee that will adjudicate nominations.
- Any individual can nominate a program.

Who will adjudicate?

- An independent international committee comprised of career development practitioners.

What is awarded?

- A specially commissioned statue of an Inukshuk. The statue was designed specifically for this award and will be presented in person wherever possible.
- Each program selected for the Inukshuk award will have their program published in the Canadian Journal of Career Development as part of the Journal's ongoing promotion of international best practices in community career development.

Why the Inukshuk statue?

The Inukshuk has been chosen for it's significance to the career development field as it has become the symbol of the Canadian Journal of Career Development. Their role as sign posts in northern climates are well known throughout Canada.

As David Merkuratsuk, a post secondary student from Nain, Labrador writes...

"These magnificent stone cairns show that you should always have hope in where to go because they are the leaders that help the way to safety which brings food, shelter, and life. All the years that I have been travelling through the barrens, I have always been amazed how these Inukshuks can bring you to your destination and they ask nothing in return."

How often is the award presented?

The award will be presented on a less than annual basis or as nominations dictate.

Nominations should be sent to:

Selection Committee, Inukshuk Award
Canadian Journal of Career Development
Faculty of Education
G. A. Hickman Building, Room E-5036
St. John's, NL
A1B 3X8